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NORM ATTAINING OPERATORS AND 
RENORMINGS OF BANACH SPACES 

BY 

WALTER SCHACHERMAYER 

A B S T R A C I  

We define two geometric concepts of a Banach space, property a and/3, which 
generalize in a certain way the geometric situation of l and co. These properties 
have been used by J. Lindenstrauss and J. Partington in the study of norm 
attaining operators. J. Partington has shown that every Banach space may 
(3+e)-equivalently be renormed to have property /3. We show that many 
Banach spaces (e.g., every WCG space) may (3 + e )-equivalently be renormed 
to have property a. However, an example due to S. Shelah shows that not every 
Banach space is isomorphic to a Banach space with property a. 

I n! roduct ion 

This work is entirely based on the remarkable  paper  of J. Par t ington [7], 

whcrc it is shown that every Banach  space may be equivalent ly r eno rmed  to 

havc " 'proper ty  B"  (cf. [5], for a definition see below). Actually,  Par t ington 

shows that these renormings  verify a cri terion (called " p r o p e r t y / 3 "  below), for 

which J. Lindenstrauss [5] showed that it implies proper ty  B. 

The  present  au thor  gives a "p redua l "  version of Par t ington ' s  const ruct ion 

which applies to a large class of Banach spaces and shows that these spaces have 

an equivalent  r enorming  verifying "p rope r ty  A "  (cf. [51). In part icular  we show 

that many  spaces failing R N P  (e.g. Co, L ' (p . ) ,  C[0,  1], l ~) have a r enorming  

verifying proper ty  A. Hence  p roper ty  A is not  equivalent  to the Bishop-Phe lps  

proper ty  (which has been shown by J. Bourgain  to be equivalent  to R N P  [1]). 

I. Definitions and notations 

The Banach  spaces are assumed - -  only for simplicity - -  real. We say that an 

opera to r  T f rom a Banach space X to a Banach space Y at tains  its norm if there 

is an x G X, IIx II = 1 such that II TII = II Zx II. 
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DEFINITION 1.1. ([5]) (a) The Banach space X has property A if for every 

Banach space Y the norm attaining operators are dense in L(X, Y). 
(b) The Banach space Y has property B if for every Banach space X the norm 

attaining operators are dense in L(X, Y). 

J. Lindenstrauss [5] used the following two criteria for property A and B, 

which we call property ot and /3 in view of Proposition 1.3. 

DEFINITION 1.2. (a) The Banach space X has property a if there is a ,~ with 

0 =< A < 1 and a family {(x,, y~)}~, E X x X*, with Ilx~ II = II yo II = (xo, yo> = 1 

such that 

(i) for/3 r a, I(xa, y~)[ --< A, 

(ii) the unit ball of X is the closed, circled convex hull of {x~}~.  

(b) The Banach space Y has property/3 if there is a A with 0--< A < 1 and a 

family {(y~, x~)L ~, in Y x Y*, with 1[ y~ II = II go II = <yo, x~ > = l ,  such that 

(i) fo r / 3 ~ a ,  ](ya,x~)J _-< A, 

(ii) for y E Y, Ilyll = s u p { l < y , x ~  ~ / } .  

A typical example for property t~ is ! ~, while for property/3 the spaces co or U 

are typical. 

PROPOSITION 1.3. (a) Property a implies property A. 
(b) Property fl implies property B. 

PROOF. As regards (b) this is proposition 3 of [5]. 

As regards (a) we also can easily reduce it to the results of J. Lindenstrauss, 
noting the following 

FACT. Let X have property a. Then for every a C L e > 0 and Ilx ] l -  1 

<x, y,> > 1 - ~ ( 1 -  ~ )  ~ IIx - xo I1< 2~. 

It follows that the.unit  ball of X is the closed circled convex hull of the 

uniformly strongly exposed family {x~ }~, ,  hence proposition 1 of [5] implies that 

X has property A. 

PROOF OF THE FACT. We may suppose 

X = ~ /,tiX,, t 
i - I  

where E7=1 [/z~ [-< 1 and a ~ , "  " ,a .  E L We also may assume al = a. Then 
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1 - e(1 - x ) <  ~ ~,(x~,, y~) 
i=1 

i - 2  

__--< ~t~l "4- X ( l  - -  ~J, , ) .  

Hence (1 - e)  < /z ,  and therefore IIx - x~ II ~ 2~. 

However  we also want to give a direct proof of (a), which is almost trivial. Let 

T" X--~ Y be a continuous operator,  T #  0 and e > O. Find a ~ I such that 

Define "it by 

Then 

while f o r / 3 #  a 

IITx~II~IITII(I  + eA )/(1 + ~). 

Tx = Tx +e  .(x,y~)Tx~. 

IlTx~ II> II TII(I§ EA) 

11 ~x~ II ~ II TII-(1 + A .  e). 

Hence "]" attains its supremum at x~ and clearly I[T - TII ~ ~" II TII. This finishes 

the (direct) proof of (a). [] 

We now turn to the duality between properties a and/3. It will turn out that o~ 

is "predual"  to a certain strengthening of/3. We shall need some notation: If Y is 

a Banach space and X a subspace of Y* we shall say that Y has property/3 

induced by X if Y has property /3 and in addition to the requirements of 

Definition 1.2(b) we may assume that x, E X  for all a E L  We now can 

formulate the duality result: 

PROPOSmON 1.4. Let X be a Banach space and Y = X*.  X has property o~ iff 

Y has property/3 induced by X. 

In particular, if Z is a reflexive Banach space then Z has property a (resp. [3) iff 

Z* has property ~ (resp. a).  

PROOF. Just note that by the bipolar theorem the closed circled convex hull 

of {x~ },~r equals the unit ball of X itt its polar is the unit ball of Y, i.e. for y E Y 

Ily II = sup{l(x~ y>l :,~ ~ I}. []  
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A Banach space X is uniformly convex (see Day [2]) if 

t~(e) = inf{l - I Ix  + y 11/2: Ilx II--< 1, Ily II--< 1, IIx - y II => ~} 

is positive for all 0 <  e =<2. X is super-reflexive when it has an equivalent 

uniformly convex norm. 

2.1. PROPOSmON (Partington [7]). Let X be superreflexive. For every K > 1 

there is 

(a) a norm II1 III on x ,  II" II =< II1" III --< g .  I1" II such that (X, Ill" III) has property 
Or', 

(b) a norm II1" Ill on x ,  I1" II =< II1" III --< K '11" II such that (X,  III-III) has property 
#. 

REMARK 2.2. 2.1(b) has been proved in [7]. We shall give a very easy and 

intuitive proof of 2. l(a) (which is, however, based on the ideas of [7]); the duality 

result 1.5 gives immediately 2.1(b). 

PROOF OF 2.1. We start with an observation used in [7]: If X is superreflexive 

it is arbitrarily nearly isometric to a uniformly convex space, for if IIx U--< p ( x ) < -  

Cl[x II and p is a uniformly convex norm on X then for 0 <  r < 1 the norm 

q ( x )  = r IIx II + (1 - r )p (x )  

is uniformly convex and satisfies 

II x II -<- q (x)_-< (r + C(1 - r))l[ x II- 

We therefore may assume without loss of generality that (x ,  ll. II) is uniformly 
c o n v e x .  

Now let 0 < e  < 1  be such that K > ( l - e ) - '  and find a family (x~).~i in X, 

Ilxo 1[ -- 1, which is maximal with respect to the condition that for a ~ /3  

II x~ - x~ lt >= e and 

Let B be the closed circled convex hull 

functional of B. Clearly 

r[xo + x~ ll>- ~. 

of {x~}~, and II1" III the Minkowski 

(1) II . II <= tll . III. 

On the other hand note that for x ~ X, IIx ]l = 1 there is a ( x )  C I such that 

(2) I Ix-xo,=, l l<~ or IIx+xo,x, l l<~.  

Denote by II1" Ill* the dual Minkowski functional of II1" Ill on x *  and by ]]. I1" 
the norm of X*. For y E X* we get in view of (2), 
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fly I1" = sup{l(y,x) l : l lx  l[ = 1} 

<=sup{](y,x~)[+[(y,x)l:a ~ l : l l x l l < e }  

= Ill y I/1' + ~ II y I1". 

This implies that for y E X* 

and therefore for x E X 

(3) 

(1 - ~ ) t ly  It* <-- 111 y 111" 

K .  IIx II--> III x III. 

(1) and (3) give It. It <- Ill. Ill ~ gll. II. Now choose a family {Y~}~E, in X* subject 
to the condition 

Then we have, for /3z  4 a, 

II y~ It = <x~, y~ > = 1. 

(x,,, y~) < 1 - 2 8 @ ) .  

Indeed, if this were not the case, then 

((xo + xo)/2, y~) -> 1 - 8@). 

Hence in particular 

II(x~ § x~)/211 ~ 1 - 8 ( e )  

in contradiction to the inequality 

tlxo - x~ It--- ~. 

Repeating the argument with x~ replaced by - x a  we obtain, for /3 r a, 

I(x~, y~)] < 1 - 25(e).  

Hence (X, ]]]. III) has property (a),  which proves 2.1(a). It follows from 1.4 (or 

directly from the above construct ion)that  ]]]. II1" has property/3.  Also []-I1"= > 

m" Ill" ~ K'II .  lJ*- Thus - -  interchanging the roles of X and X* - -  we have also 
proved 2.1 (b). [] 

3. Renorming Co to have property 

In this section we show that Co may be (I + e)-equivalently renormed to have 

property ~. We present this special case for several reasons: (I) The result is - -  
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at least to the geometric  intuition of the author - -  amazing; (2) in more general 

cases we do not obtain the constant 1 + e ; (3) the proof is technically simpler 

than the proof in more general circumstances, but it contains in a transparent  

way all the essential ingredients of the construction. 

PROPOSITION 3.1. For K > 1 there is a norm Ill" III on Co with II" II > II1" III ---> 
g - '  II" II and such that (co, Ill" Ill ) has property a. 

In fact the constant A appearing in Definition 1.2 may be chosen to be K -~. 

PROOF. Let (~,),=1 be a dense sequence in the unit ball of Co. Define xn by 

x ~ ( i ) = ~ ( i )  i f i : n ,  

K if i = n .  

Let B be the closed circled convex hull of (x.)7-1 and III-III the Minkowski 

functional of B. Clearly B is contained in the bali around zero of radius K, hence 

Ill" 111 => K-'ll .  II. 

On the other hand B contains the unit ball of Co. Indeed let x ~ Co, liT II---- 1 and 

fix e > 0. Let  m > 2(K + 1)/e and find nl < �9 �9 �9 < n,, such that 

I Ix-~, , l l<~/2,  i = l , . . . , m .  

Let 

s = m -1 ~ xnj ; 
j=l 

then ~ is in B and ] Ix - . f l l  < e. Indeed if the coordinate i is different from 

nl, �9 �9 ", rim, then 

l iT( i ) -  ~(i)ll < ~/2. 

For the coordinates nj, where 1 = j =< m, we have the following estimate 

I x ~n,)- ~n, )1--< ,,-1 (I x ~n,)- x., ~n,)I + .,~ J x ~n,)- x~. ~n,) I) 

<= rn-l((K + 1 ) + ( m  - 1). e/2)< e. 

As e > 0 is arbitrary, B contains the unit ball of co, i.e. I1" II -> II1" III, which shows 

that II" It and Ill" III are K-equivalent. 
Let yn = K- le , ,  where e~ denotes the n ' t h  unit vector of l ' .  Clearly 

(x.,y.) = 1 
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while for m f i n  

](x., y,,)] < K -' . [] 

We can now harvest some corollaries; 3.2 and 3.3 answer open questions. 

COROLLARY 3.2. The Banach space Co equipped with the norm II1" Itl con- 

structed above has property A but fails the Bishop-Phelps property. 

PROOF. Indeed, it has been shown by J. Bourgain [1] that the Bishop-Phelps 

property is equivalent to the Radon-Nikodym property. [] 

COROLLARY 3.3. Property A is not invariant under isomorphism. 

PROOF. Indeed, it has been shown by J. Lindenstrauss [5] that Co fails 

property A. [] 

COROLLARY 3.4. l' may be (1 + e )-equivalently renormed to have property B. 

PROOF. Proposition 1.4 even implies that l ~ may be ( l+e)-equivalent ly  

renormed to have "property fl induced by Co". 

4. Renorming general Banach spaces to have property a 

In this section we try to "squeeze a maximal amount of juice out of the 

lemon", where the lemon is the proof of 3.1. Actually it would be fairer to say 

that the lemon is constituted by Partington's ideas. 

THEOREM 4.1. Let X be a Banach space and let the ordinal y be the density 

character of X. 

Suppose that there is a family of sequences ((e2,f2)~-,)~<, with e : ~ X ,  

f :  E x * ,  Ile:ll = IIf:ll = 1 and such that 
(i) there are constants 0 <-_ l < u <= 1 such that for each (a, n) 

(e :, f :)  >= u 

while for (a, n)  ~ (fl, m)  

l< " f ' ) l  < l "  e a , IJ - ~ -  , 

(ii) foreach a < T and e > 0  there are scalars (A.)~_1,,O< X. < 1, E~=I An = 1 

such that for all choices of signs e l , "  ", eN 

 -:ll 



208 w.  S C H A C H E R M A Y E R  Isr. J. Math. 

Then for K > (u - l ) - ' +  1 there is a norm II1" III on x with I1 II ~ II1" III 

g- '  I1" II such that (X, II1" III) has property ct. 

In fact, the constant A appearing in Definition 1.2 may  be chosen to be 

((K - 1)-'+ Ou-'. 

PROOF. Let (~,)~<~ be dense in the unit ball of X. For a < 3' and n E N 

define x2 and y~" in the following way: 

If (~:a,fT,)> 0 let 

and if (~,,, f2) < 0 let 

Define 

x2=~a + ( K -  1)e2 

x :  = ~:~ - ( K -  1)e2. 

y :  = [:/(x 2,/2). 

Let B be the closed circled convex hull of {{x2}7=,}a<, and II1 Ill the Minkowski 

functional of B. Clearly B is contained in the ball around zero of radius K. 

Hence 

Ill" Ill --> K-'II" It. 

On the other hand B contains the unit ball of X. Indeed let x E X, II x II -<- 1 and 

e > 0. Find a < 3' such that IIx - ~ II < ~/2. By hypothesis we may find positive 
scalars N (A.).=1, YA. = 1 such that for all choices of signs e~,'-",eN 

Hence 

and therefore 

e.A,e21 < e / 2 ( K  - 1). 
n m l  

s~a - 2 A,x"- < e/2 
r l = l  

t x - 2 A , x 2  < e .  
t l = l  

Since e > 0 is arbitrary, B contains the unit ball of X, i.e. 

I1 II--> II1 III. 

Finally note that for a < 3' and n E N 

(x2 ,y2)= 1. 
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On the other  hand, if (or, n ) ~  (/3, m)  

l(x2, yY)t <= I(~o, yY)l + (K - 1)l(e,~, Y~')I 

< 1/(K - 1)u +(K - 1)(1/(K - 1)u)-1 

= (1/(K - I) + l)/u, 

a constant strictly smaller than 1 by the choice of K. Hence (X, II1" III) has 
property a. []  

4.2. REMARK. The most obvious application of 4.1 is the following situation: 

Suppose there is a separable Banach space X and a biorthogonal sequence 

(h,, g~):=~ C X • X* with Ilh~ II-- 1, IIg-II ~ M such that h, tends to zero weakly. 

Indeed in this case we use a bijection from N to N • N to relabel (h,, g~/llg. 11)2=, 
as a double sequence ((eT~,fT.)~=l) . . . .  Then the conditions of 4.1 are satisfied 

with u = M -~ and !---0. 

Note, however, that condition (ii) of 4.I is weaker than requiring that for each 

a < y the sequence (e~)~., tends to zero weakly. 

In order to take full advantage of this observation we need a folklore-type 

lemma, which is a straightforward consequence of Dvoretzky's  theorem and the 

work of D. Amir and J. Lindenstrauss on WCG spaces:.  

4.3. LEMMA. Let X be an infinite dimensional weakly compactly generated 

Banach space and let the ordinal y be the density character of X and e > O. 

There is a family ((e:,fT,)~=O~<~, Ile:ll = IIf:ll = 1, 

n n ~ .  (eo,f~) = 1/(2 + e) V(a, n), 

(e~,f~) = 0 V(a, n)~  (/3, m), 

and such that, for each a < y and k E N ,  the elements {e,~:2 k < n -<2 k§ are 

(1 + e /k  )-equivalent to the unit vector basis of 2k-dimensional 12. 

PROOF. Assume first that X is separable. Choose a normalized basic 

sequence (x~)7.t with basis constant less than 1 + e/4. Let g~ = x~. Now apply 

successively Dvoretzky's  theorem (cf. [6]) to find an increasing sequence of 

integers (i~)~l with i~ -- I such that we may find linear combinations g2k+~, �9 �9 g2k 

of x,,.~,..-,x~§ which are ( l + e / 4 k ) - e q u i v a l e n t  to the unit vector basis of 

2~-dimensional 12. Note that (g~)7_~ is then a basic sequence with basis constant 

less than 1 + e/2. Hence we may find an orthogofial sequence ( h . ) ~ l  in X* with 

I Ih , / t<2 + e. 
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Finally it is clear how to obtain the desired double-indexed sequence 

((e~,/~,)7=,) . . . .  Just normalize the h , ' s  and relabel a suitably chosen sequence 

of the pairs (g,, hn/ll h, II) such that each of the sequences (e ~,):., contains almost 
isometric /2-blocks in the prescribed way. 

We now turn to the case, where X is not separable, i.e. y > to. It follows from 

the work of Amir and Lindenstrauss (cf. [3], p. 140, lemma 5) that there is a 

"long sequence" of linear projections (Pa)~<~ such that 

(i) Po = 0 and 1[ P. II = 1 for 1 < a < y, 
(ii) PaP# = P~P. = P~ for/3 < a < y, 

(iii) for every a < 3' the range of P . + ,  - Pa is of infinite dimension. 

Now find in every space X~ = (P.§ - P . ) X  as in the first part of the proof a 

basic sequence g." with basis constant less than 1 + e/2 and such that for each k 
n 2 k * l  the finite sequence {g.}~.~+, is (1 + e /k ) - i somorph ic  to the unit vector basis of 

2 k-dimensional 12. Let Z be the space spanned by {g~- : n E N, a < 3'}. It is easily 

checked that the biorthogonal functionals/~2E Z* are of norm less than 2 + e 

and may therefore be extended to hT, E X* with IIh'-II < 2 + e. 

Hence letting e2 = g," and )r = h:/llh:ll we have proved the lemma in the 

non-separable case too. [] 

QUESaaON. Is it possible to replace 1/(2 + e) in Lemma 4.3 by ( 1 - e ) ?  

4.4. THEOREM. Let X be a WCG Banach  space and  K > 3. Then there is a 

norm II1" Ill o .  x with II" II->- Ill" Ill --> g-'l l" II such that (X, Ill lU ) has property a. 

PROOF. Choose a u so that ~ > u > 1 / ( K -  1) and apply Lemma 4.3 with 

e > 0  so small that 1/(2+ e ) >  u and then apply Theorem 4.1 (where we take 

! =0) .  []  
Finally we shall give an example of a Banach space which is not WCG but to 

which Theorem 4.1 may be applied, namely IL We could list some more 

examples but in general the above technique fails - -  as was kindly pointed out to 

us by the referee: Indeed, under the assumption V = L, S. Shelah has con- 

structed a nonseparable Banach space X such that for every uncountable family 

( x . ) ~  a n d  e > 0 there are different a0,  a , , . . . ,  a .  and Aj > 0,  E? A t = 1 so that 

IIx~- E~ A:., II < ~. This property remains valid under any renorming; it follows 

easily from the definition that this space cannot be renormed satisfying property 

(a).  We do not know whether it can be renormed to have property A. 

4.5. PROPOSITION. For K > 2 there is a norm Ill" Ill on l | such that t1" II >- 

Ill" Ill >--- K - '  ll" ]l and  such that (t | Ill" Ill ) has  property a. 
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PROOF. It is well known (and easily proved) that l | contains l'(I) isonetri-  

cally where I is a set of cardinality of the continuum. 

Similar arguments as in Lemma 4.3 provide biorthogonal elements 

{(e~,/~) : n E N, o~ < f~c} such that for each a < lac and k E N the finite sequence 

(e")~L'~ +, is (1 + e )-isomorphic to 2 k-dimensional 12 and such that IIf:ll < 1 + e. 

Hence we may apply 4.1 with l = 0 and u = 1/(1 + e ). []  

To finish this section, we give a result on embedding: 

4.6. THEOREM. Every Banach space X may be isometrically and 1- 
complemented embedded into a Banach space Z with property a and having the 
same density character as X. 

PROOF. Let the ordinal 3/be the density character of X and let I be the set 

I = { (a ,n ) :  ot <3 / ,n  EN}. 

Let Z = X �9 co(l) with the norm 

II(x, w)llz = sup{llx D,  II w II~,,}. 

Denote ix (resp. i~n) the natural embedding of X (resp. Co(I)) into Z and 1rx the 

canonical projection from Z onto ix (X) along Co(I). Note that Z has the same 

density character as X. 

Let  e :  be the image of the (a ,n ) - th  unit vector under i~n and f ~ E Z *  the 

biorthogonal functionals (i.e. f :  vanishes on ix (X) and on e ~' for (/3, m ) #  (a, n) 

while (e~,f2) = 1). 

Let (~)~<,  be dense in the unit ball of Z and define for ot <3/  and n E N  

x 3 = ~ + A : e :  

where the scalar A~ is chosen such that 

Note that IIx:ll = 2. Define 

(x ~, f=) = 2. 

y" = f ~ / 2 .  

Let Ill" Ill be the Minkowski-functional of the closed circled convex hull of 

{x,~ : a < y, n E N}. Clearly B n ix (X) equals the intersection of the unit ball of 

Z with ix(X)  hence the embedding ix:X---)(Z, II1" III) is isometric. Also the 

projection zrx :(Z, Ill" III )--" ix ( x )  has norm one. []  
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